Maths at Cleeve Prior Primary

School

Updated Autumn 2021

Appendix 1

Written calculations

This appendix is taken from the White Rose calculation policy and is a guide to progression in calculations.

Objective \& Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use part-part whole model. Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in $8 \quad 1 \quad$ a bar.	$4+3=7$ Use the part-part $10=6+4$ whole diagram as shown above to move \square
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ \square Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10. This is an essential skill for column addition later.	$6+5=11$ Start with the bigger number and use the smaller number to make 10. Use ten frames.	Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10.	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?

Represent \& use number bonds and related subtraction facts within 20	2 more than 5 .	$9+5=14$	Emphasis should be on the language ' 1 more than 5 is equal to 6 .' ' 2 more than 5 is 7. ' ' 8 is 3 more than 5.'

Objective \＆ Strategy	Concrete	Pictorial	Abstract							
Adding multiples of ten	Model using dienes and bead strings	Use representations for base ten．	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$							
Use known number facts Part－part whole		$\begin{gathered} 20 \\ \square+\square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \end{gathered}$	$\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$							
Using known facts		$\begin{aligned} \because+\therefore & =\therefore \\ \\|\\|+\\|\\| & =\\| \\| \\| \\ \square \square+\text { 昭 } & =\text { 昭吅 } \end{aligned}$ Children draw representations of H, T and O	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$							
Bar model	$3+4=7$	$7+3=10$	23 25 $?$ $23+25=48$							

Objective \& Strategy	Concrete	Pictorial	Abstract
Add a two digit number and ones	$17+5=22$ Use ten frame to make 'magic ten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$	Use part part whole and number line to model.	$17+5=22$ Explore related facts $17+5=22$ $5+17=22$ $22-17=5$ $22-5=17$
Add a 2 digit number and tens	Explore that the ones digit does not change		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$
Add two 2-digit numbers	A P Model using dienes, place value counters and numicon	Use number line and bridge ten using part whole if necessary.	$\begin{gathered} 25+47 \\ 20+5 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$
Add three 1-digit numbers	Combine to make 10 first if possible, or bridge 10 then add third digit	Regroup and draw representation.	$\begin{aligned} (4+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make/ bridge ten then add on the third.

Objective \&	Concrete	Pictorial	Abstract
Column Addition-no regrouping (friendly numbers) Add two or three 2 or 3digit numbers.	 Model using Dienes or numicon. Add together the ones first, then the tens. Move to using place value counters	Children move to drawing the counters using a tens and one frame.	$\begin{array}{r} 223 \\ +114 \\ \hline 337 \end{array}$ Add the ones first, then the tens, then the hundreds.
Column Addition with regrouping.	Exchange ten ones for a ten. Model using numicon and pv go cofftelers.	5 Children can draw a representation of the grid to further support their understanding, transferring the ten underneath the line	$20+5$ $40+13$$60+73$ Start by partitioning the numbers before formal column to show the exchange.\quad+ +36 11

Objective \&	Concrete			Pictorial		Abstract
Add numbers with up to 4 digits	Children co counters to a ten and hundreds for	tinue to use dien dd, exchanging tens for a hund a thousand. \square Tens 10000 IIIII	or pv ones for d and ten	\bullet $\because 8$ $\because \because$ $\because \because$ \ddots 7 1 \bullet Draw represent	\bullet \because \bullet $\because \because$ \because 5 1 - s using place value grid.	$\begin{array}{r} 3517 \\ +\quad 396 \\ \hline 3913 \end{array}$ Continue from previous work to transfer hundreds as well as tens.
Add numbers with more than 4 digits. Add decimals with 2 decimal places, including money.	tens ones 0 tenths hundredths Introduce decimal place value counters and model exchange for addition.			$2.37+81.79$ tens ones 00000 0	tents hundreates 000 00000 000 00 0000 00000 0000	Relate to money and measures.
Add several numbers of increasing complexity Including adding money, measure and decimals with different numbers of decimal points.	As above					

Objective \& Strategy	Concrete	Pictorial	Abstract
Taking away ones.	Use physical objects, counters, cubes etc to show how objects can be taken away.	$15-3=12$ Cross out drawn objects to show what has been taken away.	$7-4=3$ $16-9=7$
Counting back	 Move objects away from the group, counting backwards. Move the beads along the bead string as you count back.	Count back in ones using a number line.	Put 13 in your head, count back 4. What number are you at?
Find the Difference	Compare objects and amounts Lay objects to represent bar model.	Count on using a number line to find the difference.	Hannah has12 sweets and her sister has 5 . How many more does Hannah have than her sister.?

Objective \& Strategy	Concrete	Pictorial	Abstract
Represent and use number bonds and related subtraction facts within 20 Part-Part Whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the arts, what s the other part? $10-6=4$	Use pictorial representations to show the part.	Move to using numbers within the part whole model.
Make 10	Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5 .	Jump back 3 first, then another 4 . Use ten as the stopping point.	$16-8$ How many do we take off first to get to 10? How many left to take off?
Bar model	$5-2=3$		8 2$\begin{aligned} & 10=8+2 \\ & 10=2+8 \\ & 10-2=8 \\ & 10-8=2 \end{aligned}$

Objective \& Strategy	Concrete	Pictorial	Abstract
Column subtraction without regrouping (friendly numbers)	Use base 10 or Numicon to model		$\begin{gathered} 47-24=23 \\ -40+7 \\ -\frac{20+4}{20+3} \\ \hline \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding.
Column subtraction with regrouping	Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into tten ones. Use the phrase 'take and make' for exchange.	Children may draw base ten or PV counters and cross off.	Begin by partitioning into place value columns Then move to formal method.

Objective \& Strategy	Concrete	Pictorial	Abstract
Subtracting tens and ones Subtract with up to 4 digits. Introduce decimal subtraction through context of money	234-179 Model process of exchange using Numicon, base ten and then move to Place Value counters.	Children to draw place value counters and show their exchange	Use the phrases transfer and exchange
Subtract with at least 4 dig- its, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal	As above.	Children to draw place value counters and show their exchange.	$\begin{aligned} & \begin{array}{l} { }^{2} 8^{10} \not{ }^{1} 0^{4} \not 8^{1} 6 \\ - \\ 2128 \\ \hline 28,928 \\ \hline \end{array} \\ & \begin{array}{l} \text { Use zeros } \\ \text { for place- } \\ \text { holders. } \end{array} \\ & \hline \end{aligned}$
Subtract with increasingly large and more complex numbers and decimal values.	By this stage, standard written methods should be secure.		$\begin{array}{r} 0 x^{14} 510,699 \\ -\quad 89,949 \\ \hline 60,750 \end{array}$ $\begin{array}{r} x 10 \cdot 5 \cdot{ }^{3} \mathrm{k} 119 \mathrm{~kg} \\ -36 \cdot 080 \mathrm{~kg} \\ \hline 69 \cdot 339 \mathrm{~kg} \end{array}$

Objective \& Strategy	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipultives (including cubes and Numicon) to demonstrate doubling	Draw pictures to show how to double numbers Double 4 is 8	Partition a number and then double each part before recombining it back together.
Counting in multiples	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$
Making equal groups and counting the total	Use manipulatives to create equal groups.	Draw to show $2 \times 3=6$ Draw and make representations	$2 \times 4=8$

| |
| :---: | :---: | :---: | :---: | :---: |
| Strategy |\quad Concrete

Objective \& Strategy	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and PV counters.	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back together.
Counting in multiples of $2,3,4$, 5, 10 from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models. $5+5+5+5+5+5+5+5=40$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples. 3 3 3 3	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$

Objective \& Strategy	Concrete	Pictorial	Abstract
Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \\ & \\ & \begin{array}{l} \begin{array}{l} \text { Use an array to write } \\ \text { multiplication sentences and } \\ \text { reinforce repeated addition. } \end{array} \\ \\ \\ \\ 5+5+5=15 \\ 3+3+3+3+3=15 \\ 5 \times 3=15 \\ 3 \times 5=15 \end{array} \end{aligned}$
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences.

Objective \& Strategy	Concrete	Pictorial	Abstract
Grid method	Show the links with arrays to first introduce the grid method. 4 rows of 10 4 rows of 3 Move onto base ten to move towards a more compact method. 4 rows of 13 Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows Fill each row with 126 calculations 4×126 Add up each column, starting with the ones making any exchanges needed Then you have your answer.	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below. Bar model are used to explore missing numbers $4 \times \square=20$	Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $210+35=245$ Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

Objective \& Strategy	Concrete	Pictorial	Abstract
Grid method recap from year 3 for 2 digits $\times 1$ digit Move to multiplying 3 digit numbers by 1 digit.	Use place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows Fill each row with 126 Add up each col making any exchanges needed	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.	Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $210+35=245$
Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$ It is important at this stage that they always multiply the ones first. The corresponding long multiplication is	x 300 20 7 4 1200 80 28 The grid method my be used to show how this relates to a formal written method. Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	

Objective \& Strategy	Concrete	Pictorial	Abstract
Column Multiplication for 3 and 4 digits $x 1$ digit.	 It is im- portant at this stage that they always multiply the ones first. Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$	x 300 20 7 4 1200 80 28	327 This will lead to a compact method.
Column multiplication	Manipulatives may still be used with the corresponding long multiplication modelled alongside.	Continue to use bar modelling to support problem solving	1 8 \times 1 3 5 4 1 8 0 2 3 4 18×3 on the first row $(8 \times 3=24$, transferring the 2 for 20 , then 1 x 3) 18×10 on the 2nd row. Show multiplying by 10 by putting zero in units first

 Strategy	Concrete	Pictorial	Abstract
Division as sharing Use Gordon ITPs for modelling		Children use pictures or shapes to share quantities.	12 shared between 3 is 4
	I have 10 cubes, can you share them equally in 2 groups?	Sharing: 12 shared between 3 is 4	

 Strategy	Concrete	Pictorial	Abstract
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$ $96 \div 3=32$	Continue to use bar modelling to aid solving division problems. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	How many groups of 6 in $\begin{gathered} 24 ? \\ 24 \div 6=4 \end{gathered}$
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rl} \operatorname{Eg} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \\ & 28=7 \times 4 \\ & 28=4 \times 7 \\ & 4=28 \div 7 \\ & 7=28 \div 4 \end{aligned}$

 Strategy	Concrete	Pictorial	Abstract
Division with remainders.	$14 \div 3=$ Divide objects between groups and see how much is left over Example withou $40 \div 5$ Ask "How many Example with $38 \div 6$	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder. remainder 2 Use bar models to show division with remainders. remainder: $5 s$ in $40 ?^{\prime \prime}$ mainder: rs, when it becomes inefficient to count in single mu orded using known facts.	Complete written divisions and show the remainder using r. $\begin{array}{r} 29 \div 8=\underset{\uparrow}{\uparrow} \begin{array}{r} \text { ¢ } \\ \uparrow \\ \text { dividend } \\ \text { divisor quotient } \end{array} \end{array}$ fives a remainder of 2 ultiples, bigger

Appendix 2

Mental calculations

This appendix is taken from the National Strategies Teaching Children to Calculate Mentally (2010) and is a guide to progression in mental calculations.

Addition and subtraction

- number pairs with a total of

10 , e.g. $3+7$, or what to add to a single-digit number to make 10, e.g. $3+\square=10$

- addition facts for totals to at least 5, e.g. $2+3,4+3$
- addition doubles for all numbers to at least 10 , e.g. $8+8$
- add or subtract a pair of single-digit numbers,
e.g. $4+5,8-3$
- add or subtract a single-digit number to or from a teens
number, e.g. $13+5,17-3$
- add or subtract a single-digit to or from 10 , and add a multiple of 10 to a single-digit number, e.g. $10+7,7+$ 30
- add near doubles, e.g. $6+7$
- reorder numbers when adding, e.g. put the larger number first
- count on or back in ones, twos or tens
- partition small numbers, e.g.
$8+3=8+2+1$
- partition and combine tens and ones
- partition: double and adjust, e.g. $5+6=5+5+1$
- addition and subtraction facts for all numbers up to at least 10, e.g. $3+4,8-5$
- number pairs with totals to 20
- all pairs of multiples of 10 with totals up to 100, e.g. 30 +70 , or $60+\square=100$
- what must be added to any two-digit number to make
the next multiple of 10, e.g
$52+\square=60$
- addition doubles for all numbers to 20 , e.g. $17+17$ and multiples of 10 to 50 , e.g. $40+40$
- add or subtract a pair of single-digit numbers,
including crossing 10 , e.g. $5+8,12-7$
- add any single-digit number to or from a multiple of 10,
e.g. $60+5$
- subtract any single-digit number from a multiple of 10, e.g. $80-7$
- add or subtract a single- digit number to or from a two-digit number, including crossing the tens boundary, e.g. $23+5,57-3$, then $28+$ 5, 52-7
- add or subtract a multiple of 10 to or from any two-digit number, e.g. $27+60,72-50$
- add $9,19,29, \ldots$ or 11,21 , 31, \ldots
- add near doubles, e.g. 13 + $14,39+40$
- reorder numbers when adding
- partition: bridge through 10 and multiples of 10 when adding and subtracting
- partition and combine multiples of tens and ones
- use knowledge of pairs making 10
- partition: count on in tens and ones to find the total
- partition: count on or back in tens and ones to find the difference
- partition: add a multiple of 10 and adjust by 1
- partition: double and adjust
- addition and subtraction facts for all numbers to 20 , e.g. $9+8,17-9$, drawing on knowledge of inverse operations
- sums and differences of multiples of 10 , e.g. $50+80$, 120-90
- pairs of two-digit numbers with a total of 100 , e.g. 32 $+$ 68 , or $32+\square=100$
- addition doubles for multiples of 10 to 100 , e.g. $90+90$
- add and subtract groups of small numbers, e.g. 5-3 $+2$
- add or subtract a two-digit number to or from a multiple of 10 , e.g. $50+38,90-27$
- add and subtract two-digit numbers e.g. $34+65,68$ 35
- add near doubles, e.g. 18 + $16,60+70$
- reorder numbers when adding
- identify pairs totalling 10 or multiples of 10
- partition: add tens and ones separately, then recombine
- partition: count on in tens and ones to find the total
- partition: count on or back in tens and ones to find the difference
- partition: add or subtract 10 or 20 and adjust
- partition: double and adjust
- partition: count on or back in
minutes and hours, bridging through 60 (analogue times)
- sums and differences of pairs of multiples of 10,100 or 1000
- addition doubles of numbers 1 to 100 , e.g. $38+38$, and the corresponding halves
- what must be added to any three-digit number to make the next multiple of 100 , e.g. $521+\square=600$
- pairs of fractions that total 1
- add or subtract any pair of two-digit numbers, including crossing the tens and 100 boundary, e.g. $47+58$, 91-35
- add or subtract a near multiple of 10 , e.g. $56+29$, 86-38
- add near doubles of twodigit numbers, e.g. $38+37$
- add or subtract two-digit or three-digit multiples of 10 , e.g. $120-40,140+150,370$ - 180
- count on or back in hundreds, tens and ones
- partition: add tens and ones separately, then recombine
- partition: subtract tens and then ones, e.g. subtracting 27 by subtracting 20 then 7
- subtract by counting up from the smaller to the larger number
- partition: add or subtract a multiple of 10 and adjust, e.g. $56+29=56+30-1$, or $86-38=86-40+2$
- partition: double and adjust
- use knowledge of place value and related calculations, e.g. work out $140+150=290$ using $14+15=29$
- partition: count on or back in minutes and hours, bridging through 60 (analogue and digital times)
- sums and differences of decimals, e.g. $6.5+2.7,7.8-$ 1.3
- doubles and halves of decimals, e.g. half of 5.6, double 3.4
- what must be added to any four-digit number to make the next multiple of 1000 , e.g. $4087+\square=5000$
- what must be added to a decimal with units and tenths to make the next whole number, e.g. $7.2+\square=8$
- add or subtract a pair of twodigit numbers or three-digit multiples of 10 , e.g. $38+86$, $620-380,350+360$
- add or subtract a near multiple of 10 or 100 to any two-digit or three-digit number, e.g. $235+198$
- find the difference between near multiples of 100 , e.g. $607-588$, or of 1000 , e.g. 6070-4087
- add or subtract any pairs of decimal fractions each with units and tenths, e.g. $5.7+$ 2.5, 6.3-4.8
- count on or back in hundreds, tens, ones and tenths
- partition: add hundreds, tens or ones separately, then recombine
- subtract by counting up from the smaller to the larger number
- add or subtract a multiple of 10 or 100 and adjust
- partition: double and adjust
- use knowledge of place value and related calculations, e.g. $6.3-4.8$ using $63-48$
- partition: count on or back in minutes and hours, bridging through 60 (analogue and digital times)
- addition and subtraction facts for multiples of 10 to 1000 and decimal numbers with one decimal place, e.g. $650+\square=930, \square-1.4=2.5$
- what must be added to a decimal with units, tenths and hundredths to make the next whole number, e.g. 7.26 $+\square=8$
- add or subtract pairs of decimals with units, tenths or hundredths, e.g. $0.7+3.38$
- find doubles of decimals each with units and tenths, e.g. $1.6+1.6$
- add near doubles of decimals, e.g. $2.5+2.6$
- add or subtract a decimal with units and tenths, that is nearly a whole number, e.g. $4.3+2.9,6.5-3.8$
- count on or back in hundreds, tens, ones, tenths and hundredths
- use knowledge of place value and related calculations, e.g. $680+430,6.8+4.3,0.68+$ 0.43 can all be worked out using the related calculation $68+43$
- use knowledge of place value and of doubles of two-digit whole numbers
- partition: double and adjust
- partition: add or subtract a whole number and adjust, e.g. $4.3+2.9=4.3+3-0.1$, $6.5-3.8=6.5-4+0.2$
- partition: count on or back in minutes and hours, bridging through 60 (analogue and digital times, 12-hour and 24hour clock)

Multiplication and division

- doubles of all numbers to 10 , e.g. double 6
odd and even numbers to 20
- doubles of all numbers to 20 , e.g. double 13 , and corresponding halves
- doubles of multiples of 10 to 50 , e.g. double 40 , and
corresponding halves
- multiplication facts for the 2, 5 and 10 times-tables, and corresponding division facts
- odd and even numbers to 100
- count on from and back to zero in ones, twos, fives or tens
- use patterns of last digits, e.g. 0 and 5 when counting in fives
- double any multiple of 5 up to 50 , e.g. double 35
- halve any multiple of 10 up to 100, e.g. halve 90
- find half of even numbers to 40
- find the total number of objects when they are organised into groups of 2, 5 or 10
- partition: double the tens and ones separately, then recombine
- use knowledge that halving is the inverse of doubling and that doubling is equivalent to multiplying by two
- use knowledge of multiplication facts from the 2,5 and 10 times-tables, e.g. recognise that there are 15 objects altogether because there are three groups of five
- multiplication facts for the 2 ,

3, 4, 5, 6 and 10 times-tables,
and corresponding division facts

- doubles of multiples of 10 to 100 , e.g. double 90 , and corresponding halves
- double any multiple of 5 up to 100 , e.g. double 35
- halve any multiple of 10 up to 200, e.g. halve 170
- multiply one-digit or two- digit numbers by 10 or 100, e.g. $7 \times 100,46 \times 10,54 \times 100$
- find unit fractions of numbers and quantities involving halves, thirds, quarters, fifths and tenths
- partition: when doubling, double the tens and ones separately, then recombine
- partition: when halving, halve the tens and ones separately, then recombine
- use knowledge that halving and doubling are inverse operations
- recognise that finding a unit fraction is equivalent to dividing by the denominator and use knowledge of division facts
- recognise that when multiplying by 10 or 100
the digits move one or two places to the left and zero is used as a place holder
- multiplication facts to $12 \times$ 12 and the corresponding division facts
- doubles of numbers 1 to 100 , e.g. double 58 , and corresponding halves
- doubles of multiples of 10 and 100 and corresponding halves
- fraction and decimal equivalents of one-half, quarters, tenths and hundredths, e.g. ${ }^{3}$ io is 0.3 and ${ }^{3}{ }_{100}$ is 0.03
- factor pairs for known multiplication facts
- double any two-digit number, e.g. double 39
- double any multiple of 10 or 100 , e.g. double 340 , double 800 , and halve the corresponding multiples of 10 and 100
- halve any even number to 200
- find unit fractions and simple non-unit fractions of
numbers and quantities, e.g. ${ }^{3} 8$ of 24
- multiply and divide numbers to 1000 by 10 and then 100 (whole-number answers), e.g. $325 \times 10,42 \times 100,120 \div 10$, $600 \div 100,850 \div 10$
- multiply a multiple of 10 to 100 by a single-digit number, e.g. 40×3
- multiply numbers to 20 by a singledigit, e.g. 17×3
- identify the remainder when dividing by 2,5 or 10
- give the factor pair associated with a
multiplication fact, e.g. identify that if $2 \times 3=6$ then
6 has the factor pair 2 and 3
the tens and ones separately,
then recombine
- use understanding that when a number is multiplied or divided by 10 or 100 , its digits move one or two places to the left or the right and zero is used as a place holder
- use knowledge of multiplication facts and place
value, e.g. $7 \times 8=56$ to find
$70 \times 8,7 \times 80$
- use partitioning and the distributive law to multiply, e.g.

$$
\begin{aligned}
13 \times 4 & =(10+3) \times 4 \\
& =(10 \times 4)+(3 \times 4)
\end{aligned}
$$

$$
=40+12=52
$$

- squares to 12×12
- division facts corresponding to tables up to 10×10, and the related unit fractions, e.g. $7 \times 9=63$ so one-ninth of 63 is 7 and one-seventh of 63 is 9
- percentage equivalents of one-half, one-quarter, three-quarters, tenths and hundredths
- factor pairs to 100
- multiply and divide two-digit numbers by 4 or 8 , e.g. $26 \times$
$4,96 \div 8$
- multiply two-digit numbers by 5 or 20 , e.g. $320 \times 5,14 \times$ 20
- multiply by 25 or 50 , e.g. $48 \times$ $25,32 \times 50$
- double three-digit multiples of 10 to 500 , e.g. 380×2, and find the corresponding halves, e.g. $760 \div 2$
- find the remainder after dividing a twodigit number
by a single-digit number, e.g. $27 \div 4=6 R 3$
- multiply and divide whole numbers and decimals by
10,100 or 1000 , e.g. 4.3×10,
$0.75 \times 100,25 \div 10,673 \div 100$,
$74 \div 100$
- multiply pairs of multiples of 10 , e.g. 60×30, and a multiple of 100 by a single digit number, e.g. 900×8
- divide a multiple of 10 by a singledigit number (whole number answers) e.g. $80 \div 4$, $270 \div 3$
- find fractions of whole numbers or quantities, e.g.
${ }^{3}{ }_{3}$ of $27,{ }^{4}{ }_{5}$ of 70 kg
- find $50 \%, 25 \%$ or 10% of whole numbers or quantities,
e.g. 25% of $20 \mathrm{~kg}, 10 \%$ of $£ 80$
- find factor pairs for numbers to 100 , e.g. 30 has the factor pairs $1 \times 30,2 \times 15,3 \times 10$ and 5×6
- multiply or divide by 4 or

8 by repeated doubling or
halving

- form an equivalent calculation, e.g. to multiply
by 5 , multiply by 10 , then halve; to multiply by 20 , double, then multiply by 10
- use knowledge of doubles/
halves and understanding
of place value, e.g. when multiplying by 50 multiply by 100 and divide by 2
- use knowledge of division facts, e.g. when carrying out a division to find a remainder
- use understanding that when a number is multiplied or divided by 10 or 100 , its digits move one or two places to the left or the right relative to the decimal point, and zero is used as a place holder
- use knowledge of multiplication and division facts and understanding of place value, e.g. when calculating with multiples of 10
- use knowledge of equivalence between
fractions and percentages, e.g. to find $50 \%, 25 \%$ and 10\%
- use knowledge of multiplication and division facts to find factor pairs
- squares to 12×12
- squares of the corresponding multiples of 10
- prime numbers less than 100
- equivalent fractions, decimals and percentages for hundredths, e.g. 35% is equivalent to 0.35 or ${ }^{35}$ 100
- multiply pairs of two-digit and single-digit numbers,
e.g. 28×3
- divide a two-digit number by a single-digit number, e.g. $68 \div 4$
- divide by 25 or 50 , e.g. $480 \div$ $25,3200 \div 50$
- double decimals with units and tenths, e.g. double 7.6, and find the corresponding halves e.g. half of 15.2
- multiply pairs of multiples of 10 and 100, e.g. $50 \times 30,600$ $\times 20$
- divide multiples of 100 by a multiple of 10 or 100 (whole number answers), e.g. $600 \div$ $20,800 \div 400,2100 \div 300$
- multiply and divide two-digit decimals such as $0.8 \times 7,4.8$
$\div 6$
- find 10% or multiples of 10%, of whole numbers and quantities, e.g. 30% of 50 ml , 40% of $£ 30,70 \%$ of 200 g
- simplify fractions by cancelling
- scale up and down using known facts, e.g. given that three oranges cost 24p, find the cost of four oranges
- identify numbers with odd and even numbers of factors and no factor pairs other than 1 and themselves
- partition: use partitioning and the distributive law
to divide tens and ones separately, e.g.
$92 \div 4=(80+12) \div 4$

$$
=20+3=23
$$

- form an equivalent calculation, e.g. to divide by 25 , divide by 100 , then multiply by 4 ; to divide by 50 , divide by 100 , then double
- use knowledge of the equivalence between
fractions and percentages
and the relationship between fractions and division
- recognise how to scale up or down using multiplication and division, e.g. if three oranges cost 24 p: one orange costs $24 \div 3=8 p$ four oranges cost $8 \times 4=32 p$
- Use knowledge of multiplication and division
facts to identify factor pairs and numbers with only two factors

